Chapter 1 Review

MA 123

January 15, 2016

Some Housekeeping Notes

- If you did not receive a syllabus, please get one before you leave today.
- Clickers
- WebWork

Solving Equations

Solve $3 x^{2}+2 x^{2} y+y=8$ for y in terms of x.

$$
3 x^{2}+2 x^{2} y+y=8
$$

Solving Equations

Solve $3 x^{2}+2 x^{2} y+y=8$ for y in terms of x.

$$
\begin{aligned}
3 x^{2}+2 x^{2} y+y & =8 \\
2 x^{2} y+y & =8-3 x^{2}
\end{aligned}
$$

Solving Equations

Solve $3 x^{2}+2 x^{2} y+y=8$ for y in terms of x.

$$
\begin{aligned}
3 x^{2}+2 x^{2} y+y & =8 \\
2 x^{2} y+y & =8-3 x^{2} \\
\left(2 x^{2}+1\right) y & =8-3 x^{2}
\end{aligned}
$$

Solving Equations

Solve $3 x^{2}+2 x^{2} y+y=8$ for y in terms of x.

$$
\begin{aligned}
3 x^{2}+2 x^{2} y+y & =8 \\
2 x^{2} y+y & =8-3 x^{2} \\
\left(2 x^{2}+1\right) y & =8-3 x^{2} \\
y & =\frac{8-3 x^{2}}{2 x^{2}+1}
\end{aligned}
$$

Functions

Definition

A function f is an expression that maps each element x to exactly one element $f(x)$.
$f: A \rightarrow B$
A is called the domain.
B is called the codomain.
$\{f(x): x \in A\}$ is called the range.

Find the domain of the following functions.

- $f(x)=\frac{3}{x-2}$

Find the domain of the following functions.

- $f(x)=\frac{3}{x-2}$
$x-2 \neq 0$

Find the domain of the following functions.

- $f(x)=\frac{3}{x-2}$
$x-2 \neq 0$
$x \neq 2$
$(-\infty, 2) \cup(2, \infty)$

Find the domain of the following functions.

- $f(x)=\frac{3}{x-2}$
$x-2 \neq 0$
$x \neq 2$
$(-\infty, 2) \cup(2, \infty)$
- $f(x)=\sqrt{3 x+1}$

Find the domain of the following functions.

- $f(x)=\frac{3}{x-2}$
$x-2 \neq 0$
$x \neq 2$
$(-\infty, 2) \cup(2, \infty)$
- $f(x)=\sqrt{3 x+1}$
$3 x+1 \geq 0$

Find the domain of the following functions.

- $f(x)=\frac{3}{x-2}$
$x-2 \neq 0$
$x \neq 2$
$(-\infty, 2) \cup(2, \infty)$
- $f(x)=\sqrt{3 x+1}$
$3 x+1 \geq 0$
$3 x \geq-1$

Find the domain of the following functions.

- $f(x)=\frac{3}{x-2}$
$x-2 \neq 0$
$x \neq 2$
$(-\infty, 2) \cup(2, \infty)$
- $f(x)=\sqrt{3 x+1}$
$3 x+1 \geq 0$
$3 x \geq-1$
$x \geq \frac{-1}{3}$
$\left[\frac{-1}{3}, \infty\right)$

Function Inverses

To find and inverse:

(1) Switch the independent and the dependent variables.
(2) Solve for the dependent variable.
(3) Write the inverse function in terms of the independent variable.

Function Inverses

To find and inverse:

(1) Switch the independent and the dependent variables.
(2) Solve for the dependent variable.
(3) Write the inverse function in terms of the independent variable.

If $f(x)=5 x+6$, find $f^{-1}(x)$.

Function Inverses

To find and inverse:

(1) Switch the independent and the dependent variables.
(2) Solve for the dependent variable.
(3) Write the inverse function in terms of the independent variable.

If $f(x)=5 x+6$, find $f^{-1}(x)$.
$" y=5 x+6 "$

Function Inverses

To find and inverse:

(1) Switch the independent and the dependent variables.
(2) Solve for the dependent variable.
(3) Write the inverse function in terms of the independent variable.

If $f(x)=5 x+6$, find $f^{-1}(x)$.
$" y=5 x+6 "$
$x=5 y+6$

Function Inverses

To find and inverse:

(1) Switch the independent and the dependent variables.
(2) Solve for the dependent variable.
(3) Write the inverse function in terms of the independent variable.

$$
\begin{aligned}
& \text { If } f(x)=5 x+6, \text { find } f^{-1}(x) \\
& " y=5 x+6 \text { " } \\
& x=5 y+6 \\
& x-6=5 y
\end{aligned}
$$

Function Inverses

To find and inverse:

(1) Switch the independent and the dependent variables.
(2) Solve for the dependent variable.
(3) Write the inverse function in terms of the independent variable.

If $f(x)=5 x+6$, find $f^{-1}(x)$.
$" y=5 x+6 "$
$x=5 y+6$
$x-6=5 y$
$\frac{x-6}{5}=y$
$f^{-1}(x)=\frac{x-6}{5}$

Function Inverses

To find and inverse:

(1) Switch the independent and the dependent variables.
(2) Solve for the dependent variable.
(3) Write the inverse function in terms of the independent variable.

If $f(x)=5 x+6$, find $f^{-1}(x)$.
$" y=5 x+6 "$
$x=5 y+6$
$x-6=5 y$
$\frac{x-6}{5}=y$
$f^{-1}(x)=\frac{x-6}{5}$
You can check that two functions are inverses by using composition of functions to show that each results in x..
$f\left(f^{-1}(x)\right)=f\left(\frac{x-6}{5}\right)=5\left(\frac{x-6}{5}\right)+6=x-6+6=x$
$f^{-1}(f(x))=f^{-1}(5 x+6)=\frac{5 x+6-6}{5}=\frac{5 x}{5}=x$

Cartesian Plane

Functions vs．Non Functions

Lines and Linear Functions

Slope

The slope of a line through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be found by slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$

Lines and Linear Functions

Slope

The slope of a line through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be found by slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$

Point-Slope Form

A line with slope m that passes through the point $\left(x_{0}, y_{0}\right)$ has equation: $y-y_{0}=m\left(x-x_{0}\right)$

Lines and Linear Functions

Slope

The slope of a line through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be found by slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$

Point-Slope Form

A line with slope m that passes through the point $\left(x_{0}, y_{0}\right)$ has equation: $y-y_{0}=m\left(x-x_{0}\right)$

Slope-Intercept Form

A line with slope m and y-intercept b has equation:
$y=m x+b$

Please see the Online Course Text for more Review in Chapter 1.
Omit Examples 4,5,13,14,15 - These examples are correct, but will not be in the homework nor will be tested.

